MicroTiles LED
NOTICES
COPYRIGHT AND TRADEMARKS
Copyright © 2020 Christie Digital Systems USA Inc. All rights reserved.
All brand names and product names are trademarks, registered trademarks or trade names of their respective holders.

GENERAL
Every effort has been made to ensure accuracy, however in some cases changes in the products or availability could occur which may not be reflected in this document. Christie reserves the right to make changes to specifications at any time without notice. Performance specifications are typical, but may vary depending on conditions beyond Christie’s control such as maintenance of the product in proper working conditions. Performance specifications are based on information available at the time of printing. Christie makes no warranty of any kind with regard to this material, including, but not limited to, implied warranties of fitness for a particular purpose. Christie will not be liable for errors contained herein or for incidental or consequential damages in connection with the performance or use of this material. Manufacturing facilities in Canada and China are ISO 9001 certified. Manufacturing facilities in Canada are also ISO 14001 certified.

WARRANTY
Products are warranted under Christie’s standard limited warranty, the complete details of which are available by contacting your Christie dealer or Christie. In addition to the other limitations that may be specified in Christie’s standard limited warranty and, to the extent relevant or applicable to your product, the warranty does not cover:

a. Problems or damage occurring during shipment, in either direction.
b. Problems or damage caused by combination of a product with non-Christie equipment, such as distribution systems, cameras, DVD players, etc., or use of a product with any non-Christie interface device.
c. Problems or damage caused by misuse, improper power source, accident, fire, flood, lightning, earthquake, or other natural disaster.
d. Problems or damage caused by improper installation/alignment, or by equipment modification, if by other than Christie service personnel or a Christie authorized repair service provider.
e. Use of third party product enclosures for environmental protection during outside use must be approved by Christie.
f. Problems or damage caused by use of a product on a motion platform or other movable device where such product has not been designed, modified or approved by Christie for such use.
g. Except where the product is designed for outdoor use, problems or damage caused by use of the product outdoors unless such product is protected from precipitation or other adverse weather or environmental conditions and the ambient temperature is within the recommended ambient temperature set forth in the specifications for such product.
h. Defects caused by normal wear and tear or otherwise due to normal aging of a product.

The warranty does not apply to any product where the serial number has been removed or obliterated. The warranty also does not apply to any product sold by a reseller to an end user outside of the country where the reseller is located unless (i) Christie has an office in the country where the end user is located or (ii) the required international warranty fee has been paid.

The warranty does not obligate Christie to provide any on site warranty service at the product site location.

PREVENTATIVE MAINTENANCE
Preventative maintenance is an important part of the continued and proper operation of your product. Failure to perform maintenance as required, and in accordance with the maintenance schedule specified by Christie, will void the warranty.

REGULATORY
The product has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the product is operated in a commercial environment. The product generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of the product in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at the user’s own expense. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

CAN ICES-3 (A) / NMB-3 (A)
이 기기는 업무용(A급)으로 전자파적합등록을 한 기기이오니 판매자 또는 사용자는 이 점을 주의하시기 바라며, 가정 외의 지역에서 사용하는 것을 목적으로 합니다.

ENVIRONMENTAL
The product is designed and manufactured with high-quality materials and components that can be recycled and reused. This symbol means that electrical and electronic equipment, at their end-of-life, should be disposed of separately from regular waste. Please dispose of the product appropriately and according to local regulations. In the European Union, there are separate collection systems for used electrical and electronic products. Please help us to conserve the environment we live in!
Content

Product overview .. 5
 Product documentation .. 5
 Related documentation ... 5
 Understanding the MicroTiles LED interface 6

Configuring the array .. 7
 Accessing the MicroTiles LED web user interface 7
 Changing the user account password 7
 Accessing the generated user account password 8
 Displaying content on the array 8
 Selecting the input .. 8
 Resetting all tiles to use the primary wall controller 11
 Testing the wall controller inputs 11
 Generating an EDID ... 11
 Displaying a test pattern ... 11
 Mapping the canvas ... 12
 Identifying a tile .. 12
 Assigning unique IDs to each tile 12
 Automatically mapping tiles in the array 12
 Manually mapping the tiles in the array 13
 Scaling the content ... 14
 Setting up MicroTiles LED for 3D 14
 3D requirements .. 15
 Active stereo 3D configuration 16
 Cabling the array .. 16
 Enabling 3D ... 17

Adjusting the image .. 18
 Adjusting the brightness levels of the seams between tiles 18
 Resetting all seams to the default values 18
 Adjusting the color luminosity of the array 19
 Defining the color space ... 19
 Setting a custom color space 19
 Changing the color temperature 19
Adjusting color by saturation ... 19
Adjusting the brightness of LED modules 20

Maintaining the array .. 21
 Checking the current software version 21
 Updating the MicroTiles LED software 21
 Synchronizing the date and time 22
 Backing up the MicroTiles LED profile 22
 Restoring a backed up profile 22
 Restarting the array .. 22
 Cleaning the LED panels ... 23
 Restoring factory default settings 23

Troubleshooting the array .. 24
 Viewing the status of the entire array 24
 Generating an interrogator file 24
 Exporting system status data ... 24
 Downloading the log files .. 25
 Viewing the temperature of the tiles 25
Product overview

Christie MicroTiles LED tiles are modular, high-quality image display units that can be configured to create small display configurations as well as larger more complex display canvases of virtually any size and shape.

Each tile captures a portion of the image and applies scaling, as required, which results in a single picture. The LED wall controller acts as the main system controller and coordinates with all connected tiles to form a canvas.

Christie MicroTiles LED tiles are designed to occupy a smaller more manageable install footprint with minimal mechanical and electronics components. The simplicity of the design ensures higher reliability and improved thermal management.

Product documentation

For installation, setup, and user information, see the product documentation available on the Christie website. Read all instructions before using or servicing this product.

1. Access the documentation from the Christie website:
 • Scan the QR code using a QR code reader app on a smartphone or tablet.

2. On the product page, select the model and switch to the Downloads tab.

Related documentation

Additional information on this product is available in the following documents.

- MicroTiles LED Product Safety Guide (P/N: 020-102824-XX)
- MicroTiles LED Installation and Setup Guide (P/N: 020-102825-XX)
- MicroTiles LED Specifications Guide (P/N: 020-102836-XX)
- MicroTiles LED Serial Commands Guide (P/N: 020-103050-XX)
- Replacing LED modules in a MicroTiles LED array (P/N: 020-103059-XX)
- Removing the MicroTiles LED chassis (P/N: 020-102670-XX)
Understanding the MicroTiles LED interface

Learn the different areas of the web user interface.

A Task bar—Provides access to the configuration of the MicroTiles LED array.
 • Dashboard—Displays a summary view of the array.
 • Input Selection—Identifies and tests the inputs providing content to the array.
 • Canvas Editor—Specifies the array dimensions and scaling.
 • Seam Correction—Adjusts the tile seams so the brightness is uniform across the array and reduces the visibility of the seams.
 • Color Settings—Sets the color space, saturation, brightness, and color temperature.
 • System Settings—Upgrades the firmware and exports system logs.
 • Status—Identifies the areas of the array triggering errors or warnings.

B Device list—Lists all LED wall controllers, Octrollers, and LED tiles in the array.

C Tool bar—Displays the name, date, and time of the LED wall controller, as well as the buttons for test patterns and Tile ID.

D Array view—Displays the configured layout of the array. Users can select an individual tile or multiple tiles simultaneously to adjust seam brightness.

E Properties pane—Displays the properties of the array, device, and edge, depending on the area of the web user interface being accessed.

F System status indicator—Displays the overall health of the array.
 • Green—No errors or warnings detected.
 • Orange—Warnings have been detected, which may impact the performance of the array.
 • Red—An error has been detected that may stop content from appearing on the array.
Configuring the array

Configure the MicroTiles LED array through the web user interface.

Accessing the MicroTiles LED web user interface

Learn how to access the web user interface.

The MicroTiles LED web user interface is supported on the following browsers:

- Google Chrome
- Microsoft Edge
- Safari

Access the web user interface to configure the array and monitor the status of the components.

1. In a web browser, type the IP address of the LED wall controller. The IP address is displayed on the LED wall controller display.
 In configurations with two LED wall controllers, entering the IP address for either wall controller accesses the same web user interface settings.
2. Log into the session with the user name and the password. The user name and password are case-sensitive.
3. Click Login.

Changing the user account password

Periodically change the user account password to limit access to the web interface to authorized users. Christie recommends changing the default user account password.

1. From the home page of the web user interface, select System Settings
2. In the Controller area, beside Remote Password click Edit.
3. Click the Current Password and type your current password.
4. Click New Password and type your new password.
 Create your password using 4 to 32 characters. The password can be any combination of letters, numbers, and symbols (ASCII-standard characters only). Accents and accented characters are not supported.
5. In the Confirm Password field, retype your new password.
6. Click Apply.
Accessing the generated user account password

In some situations, the user account password is not available and the generated user password can be used to access the web user interface.

Note the following about the generated user account password:

- Every time the user account password is updated, the generated password is changed.
- If the system defaults are reset using the Reset Factory Defaults feature, the user account password is reset.

1. From the LCD display on the wall controller, select **Admin**.
2. Press the down arrow until the Generated Password is displayed.
 Use the generated password to access the web user interface.

Displaying content on the array

Learn the different methods of configuring the input for a MicroTiles LED array.

Selecting the input

Configure the input for an array with one or more LED wall controllers.

1. Log into the MicroTiles LED web user interface.
2. Select **Input Selection**.
3. In the Device List, select the LED wall controller.
4. In the properties area, specify this is the **Primary Controller**.
5. Configure the input.
 - **E1000 wall controller**
 a. Select the input.
 - **Disable**—Disables displaying content on the array.
 - **DP 1 or DP 2**—Provides content to the LED wall controller through the DisplayPort input.
 - **HDMI 1 or HDMI 2**—Provides content to the LED wall controller through the HDMI input.
 - **DP Stitched or HDMI Stitched**—Splits content to the LED wall controller across the two DP or HDMI inputs, where each input is providing half of the video. The two inputs are stitched together, displaying the content as a single video. Input 1 populates the left half of the array, and Input 2 populates the right. Both signals must have identical timing.
 b. If the second HDMI or DP port is going to provide redundancy for the content going through HDMI 1 or DP 1, select **Set [input name] as redundant**.
 - **E1100 wall controller**
 a. Select the input.
 - **Disable**—Disables displaying content on the array.
• **SDI 1 to SDI 4**—Provides content to the LED wall controller through the SDI inputs.

• **SDVOE**—Provides content to the LED wall controller through the SDVOE input.

• **SDI Quadrant Mode**—Splits content to the LED wall controller across the four SDI inputs, where each input is providing a quarter of the video. The four inputs are stitched together, displaying the content as a single video.

b. If the second SDI port is going to provide redundancy for the content going through the first SDI port, select **Set as redundant**.

• **E1000-3D wall controller**
 a. Select the input.

 • **Disable**—Disables displaying content on the array.

 • **DP 1 or DP 2**—Provides content to the LED wall controller through the DisplayPort input.

 • **HDMI 1 or HDMI 2**—Provides content to the LED wall controller through the HDMI input.

 • **DP Stitched or HDMI Stitched**—Splits content to the LED wall controller across the two DP or HDMI inputs, where each input is providing half of the video. The two inputs are stitched together, displaying the content as a single video. Input 1 populates the left half of the array, and Input 2 populates the right. Both signals must have identical timing.

 • **DP Dual Input 3D or HDMI Dual Input 3D**—Displays 3D content on the LED array.

 b. If the second HDMI or DP port is going to provide redundancy for the content going through HDMI 1 or DP 1, select **Set [input name] as redundant**.

The array diagram is updated to reflect the input selection.

6. For an additional LED wall controller, select it from the device tree.

7. Set the wall controller as **Secondary Controller**.
 By default, the second wall controller provides redundancy for the primary wall controller.

8. To configure the secondary wall controller, repeat step 5.

Redundancy configurations

Understand the different array configurations that provide redundancy.

Redundancy models with a single wall controller

• One input into the array, providing no input redundancy. Redundancy exists between octrollers.
- Two inputs into the array from two different sources with the same content. The sources on the two inputs are in sync and available to provide content if the connection between Octrollers becomes unavailable.

Redundancy models with a two wall controllers

- One input into each wall controller, each from a different source with the same content. The sources on the two wall controllers are in sync and available to provide content if the connection between Octrollers becomes unavailable.

- Each wall controller has two inputs from the same source but the sources are different, providing redundancy for stitched content.
Resetting all tiles to use the primary wall controller

When a break in the array communication flow occurs, the failover settings are used and content from two wall controllers may be being displayed on the array. Reset the tiles to use the primary wall controller.

1. Select **Input Selection**.
2. In the right pane, switch to the **Array Properties** tab.
3. To change all tiles to use the primary wall controller, in the Reset Controller Output area, select **Set**.

Related information

Testing the wall controller inputs (on page 11)

Testing the wall controller inputs

Verify the communication on each input of the wall controller is sending content to the array.

1. Select **Input Selection**.
2. In the right pane, switch to the **Array Properties** tab.
3. In the Test Controller Inputs area, select an input to test.
 - All tiles in the array show content from the selected input.
4. To return to the default input, select **None**.

Related information

Resetting all tiles to use the primary wall controller (on page 11)

Generating an EDID

Configure MicroTiles LED to accept the video source in the preferred signal formats.

1. Log into the MicroTiles LED web user interface.
2. Select **Input Selection**.
3. In the Device List, select the LED wall controller.
4. To create a custom EDID configuration, select **Generate** and type the size and frame rate of the source.
 - The EDID is generated for the currently selected input type. In configurations with two LED wall controllers, the EDID is synchronized between devices.
5. Click **Apply**.
6. To use a standard EDID configuration, in the Properties pane, select **Auto**.

Displaying a test pattern

Display a test pattern to help configure MicroTiles LED.

1. Log into the web user interface.
2. Click **Show Test Pattern**.

3. From the list, select the test pattern.

4. To turn off the test pattern, select **Off**.

Mapping the canvas

Ensure each tile knows its physical location within the array.

Identifying a tile

To locate a tile in the array, display the tile IDs on all tiles.

1. Select **Canvas Editor**.
2. In the toolbar, click **Identify Tiles**.
3. Select the information to display.
 - **Tile ID**—Displays the tile number.
 - **Module ID**—Displays the tile number on each of the three modules in the tile.
 - **Info Page**—Displays the following information on each tile in the array:
 - X,Y coordinates of the tile
 - Octroller ID number
 - Internal IP address of the Octroller and the port number on the Octroller the tile is connected to.
 - Tile number
4. To turn off the information, from the Identify Tiles list, select **Off**.

Assigning unique IDs to each tile

For better identification, assign each tile in the array a unique ID number.

Assign unique IDs to the tiles after the initial install, when all tiles have a 0 id, and after the tiles are automatically or manually mapped.

1. Select **Canvas Editor**.
2. In the Tile Setup area, click **Assign Tile IDs**.

 All tiles in the array are renumbered, row by row, with tile 1 located at the top left corner.

Automatically mapping tiles in the array

MicroTiles LED tiles are equipped with neighbor detection, which automatically determines the location of each tile within the canvas and the overall configuration of the canvas.

Christie recommends automatically mapping the tiles in the array after the chassis are installed, and after the LED tiles are installed on the chassis.

1. Select **Canvas Editor**.
2. In the tool bar, click **Identify Tiles**.

3. To start the automatic tile mapping, click **Auto Map Tile Location**.
 The location of the tiles is determined and size of the canvas is identified.

4. To view the tile edges that have been located, display the **Neighbor Detection** test pattern.
 Any edges where a neighbor has not been detected appear as red lines. Edges where neighbors have been detected are black. To update the results displayed, re-apply the test pattern.

Manually mapping the tiles in the array

Learn how to manually identify the parameters of the canvas.

1. Navigate to the Canvas Editor.
2. **Identify the size of the canvas** (on page 14).
3. Drag and drop the tile to the correct position in the array.
 Alternatively, set the starting coordinates for each tile in the array (on page 13).
4. Configure the scaling factor for the content.

Manually setting the coordinates of a tile

In configurations where a canvas includes a group of tiles not physically connected, add the tiles to the grid by specifying the X and Y coordinates.

Use the rows (y-coordinates) and columns (x-coordinates) of the grid to manually map tiles. The top left corner of the canvas is 0,0.

The image on the canvas is automatically configured and mapped after the tile is dropped into the main grid.

Tile dimensions are:

<table>
<thead>
<tr>
<th>Pixel pitch</th>
<th>Tile size (W x H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25 mm</td>
<td>192 x 216 pixels</td>
</tr>
<tr>
<td>1.50 mm</td>
<td>160 x 180 pixels</td>
</tr>
</tbody>
</table>

1. Select **Canvas Editor**.
2. Display the ID of all tiles in the canvas.
3. In the Device List or in the Array View, select the tile.
4. In the Properties area, do one of the following:
 - Enter the X,Y pixel coordinates of the top left corner of the tile.
 X is the distance in pixels from the left edge of the canvas (columns) and Y is the distance in pixels from the top edge of the canvas (rows). The top left corner of the canvas is 0,0.
 For example, for the top tile in the third column of a 1.25 mm pitch canvas, the coordinates would be X position = 384, Y position = 0.
 - Enter the column and row position of the tile.
 When typing the row or column number, do not include the letter after the number. For example, type 5 and not 5R.

The location of the tile is updated immediately.
Related information

Identifying a tile (on page 12)

Manually setting the canvas size

Set the dimensions of the canvas.
1. Select Canvas Editor.
2. In the Array Dimensions area, set the width and height of the canvas window in pixels.

Scaling the content

Adjust the content fits within the canvas.
1. Select Canvas Editor.
2. In the Array Properties area, expand Video Scaling and select how the content should scale in the content window.
 - No Resizing—Centers the content in the output window and maintains the native resolution.
 - Full Size—Scales the content to both the horizontal and vertical dimensions of the output window but does not maintain the aspect ratio.
 - Full Width—Scales the content to the horizontal dimensions of the output window while maintaining the aspect ratio. The content is either cropped or displayed in letterbox format.
 - Full Height—Scales the content to the vertical dimensions of the output window, while maintaining the aspect ratio. The content is either cropped or displayed in letterbox format.
 - Custom—Allows a custom starting position and dimension to be set for the content.

Creating a custom content window

Define the starting point and size of an area where content will be displayed.
Any changes to the settings are applied immediately.
1. Select Canvas Editor.
2. Switch to the Array Properties tab and expand the Video Scaling area.
3. Select Custom.
4. To set the starting point for the content, set the X and Y coordinates of the content origin point.
5. Set the width and height of the content window.

Setting up MicroTiles LED for 3D

MicroTiles LED is capable of displaying stereoscopic 3D video sources, relying on additional hardware (stereo emitters and glasses) to complete the display system.

3D is only available on 1.25mm tiles.
Images generated from a stereo 3D video source consist of a series of images (frames) that alternate quickly between two slightly different viewpoints, corresponding to our left and right eyes. When these frames are displayed fast enough and viewed with special glasses synchronized to the left/right (L/R) changes, the resulting image appears with the same depth and perspective sense in the real world. MicroTiles LED uses a dual-input configuration for displaying 3D content, where two video streams are provided by the video server, with the left eye supplied by one stream and the right eye supplied by the other. The video streams are frame locked and supplied concurrently.

3D requirements

Stereo 3D applications require a stereo 3D-capable source, special hardware and software setups, and the array’s 3D Settings menu option to control the processing, synchronization, and displaying of the stereoscopic 3D source material.

Hardware requirements

Understand the hardware requirements for stereo 3D applications.

- E1000-3D wall controller (P/N: 161-012104-XX)
- 3D sync cable
- AE125H IR External 3D Emitter for controlling active shutter glasses
- XPAND Vision X103-CP or X101 3D glasses
- A source, usually a computer with a 3D graphics card(s)

Software and content requirements

Understand the software and content requirements for stereo 3D applications.

- Any 3D computer software that supports 3D stereo on a supported computer(s) with associated graphic cards (suggested cards include ATI or NVIDIA)
- A video stream from a video source prepared to be sequential content (for direct-input 3D) or two video streams from a video source that has been prepared to be supplied left eye and right eye concurrently and frame locked (dual-input 3D)
Active stereo 3D configuration

Use the following diagram to understand a typical hardware configuration for active stereo 3D systems.

In response to the 3D Sync Out signal from the array, the IR emitter emits an infrared signal to a receiver in the active 3D shutter glasses. This synchronizes the active glasses to alternatively open and close for the active stereo 3D applications.

Cabling the array

Connect the cables between all components of the array.

1. Connect cables from the source to the LED wall controller.
 - For configurations with a single input, and no redundancy, connect the source cable to DP1 or HDMI1.
 - For configurations with two inputs creating a single image, connect source cables to both DP 1 and DP 2, or HDMI 1 and HDMI 2.
 The two input cables may be providing redundancy or for stitched content.
 - For configurations displaying 3D content, connect the cable for the left eye source to DP/HDMI 1 and connect the cable for the right eye source to DP/HDMI 2.

2. Using an appropriate length of QSFP+AOC optical cable, connect the cables from the LED wall controller to the first Octroller.
 Various lengths of this cable assembly are available from Christie.

3. Connect a QSFP+DAC cable between each Octcontroller in the array.

4. To create redundancy in the video signal, using an appropriate length of QSFP+AOC optical cable, connect the cable from the last Octcontroller to the LED wall controller.

5. Hang one end of an Ethernet cable in the location on the mounting sheet where an LED tile will be installed and connect the other end of the cable into an Octcontroller port.
 To avoid an increase in temperature, where possible connect QSFP+ connectors into the lower row of ports.
 A maximum of eight LED tiles can be connected to a single Octcontroller.
Various lengths of CAT 6 unshielded, UTP, 24 AWG pre-terminated cables are available from Christie. Alternatively, a custom length of Ethernet cable can be created using the Christie Cat 6 cable spool (P/N: 161-120104-XX), RJ45 Connect kit (P/N: 161-122106-XX) and Ethernet crimping tool (P/N: 11-121105-XX).

6. For each tile in the array repeat step 5.

Enabling 3D

Install and configure the array to display 3D content.

1. To enable 3D for dual-input 3D content:
 a) Install the array components as specified, using the E1000-3D wall controller.
 b) Cable the array, connecting the cable for the left eye source to HDMI or DP 1, and the right eye source cable to input 2.
 c) Install the IR emitter.
 d) Connect the 3D sync cable between the IR emitter and the service port on any Octroller.
 e) In the web user interface, select **Input Selection**.
 f) Select **DP Dual Input 3D** or **HDMI Dual Input 3D** as appropriate.

2. To enable 3D for a single, frame-sequential 3D video input:
 a) Install the array components as specified, using the E1000-3D wall controller.
 b) **Configure the array for a single input** (on page 8).
 c) Install the IR emitter.
 d) Connect the 3D sync cable between the IR emitter and the service port on any Octroller.
 e) In the web user interface, select **Input Selection**.
 f) Change the 3D sync delay to **7700**.
 g) In the 3D Settings area select **Enable 3D stereo in a single port**.

Inverting the left and right eye

Learn how to invert the 3D sequence in the case of a left and right eye mismatch.

1. Select **Input Selection**.
2. In the Device list, select the wall controller.
3. In the 3D Settings area, select **Invert Left/Right Eye**.

Adjusting the dark interval

Control the time between frames when no image is being projected to the screen.

1. Select **Input Selection**.
2. In the Device list, select the wall controller.
3. In the 3D Settings area, to specify the number of milliseconds between frames when no image is being projected, use the **Dark Interval** slider or type a value in the field.
Adjusting the image

Calibrate the display to achieve optimum picture quality.
Before adjusting the image, perform the following tasks:

1. Power on the display and display a full-field white test pattern at the targeted operating brightness.
 Displaying the test pattern for a minimum of 25 minutes brings the array up to temperature stability.
2. Position the person adjusting the image at a viewing angle centered on the display and represents a typical user position at the nominal viewing distance from the display.
 For 1.25 mm pixel pitch tiles, this distance is approximately 3.75 m.

Adjusting the brightness levels of the seams between tiles

To blend tiles together, change the brightness of the seam between the tiles or LED modules. The brightness of each LED module seam can be adjusted.

1. Display the Grayscale 25 test pattern.
2. Select Seam Correction.
3. Select the seams to adjust.
 • To select a single seam, click the gray bar.
 • To select the seams in an area of the array, or to select the entire array, click and drag the mouse on a diagonal around the seams.
 • To select multiple seams, press CTRL and select each seam to be adjusted.
 • To select the entire array, click and drag the mouse on a diagonal around all tiles in the array.
 When multiple seams are selected, changing the brightness adjusts them to the same value.
4. To change the seam brightness, move the Seam Brightness slider or change the value in the brightness percentage field.

Resetting all seams to the default values

To return the seam values back to the original values, return the seams to the default settings.

1. Select Seam Correction.
2. Click Reset.
Adjusting the color luminosity of the array

Learn how to change the brightness and gamma of the array.

1. Select Color Settings.
2. To adjust the Brightness or Gamma, move the slider or type a specific value in the field.
 The values are applied immediately.

Defining the color space

Identify how the color components are decoded for accurate color in the array.

1. Select Color Settings.
2. Expand the Color Gamut area and select a color space.
 - Max Gamut—Sets the array to use the maximum gamut the array can achieve, based on the lowest achievable gamut of an LED module in the array. The triangle representing the maximum gamut is always displayed on the color chart.
 - NTSC-1987, NTSC-1953, REC-709, DCI-P3—Sets the array to use the specified gamut to the percentage of the color space the LEDs in the array can achieve.
 - Custom—Specifies a custom color space for how the color components are decoded for accurate color in the array.

Setting a custom color space

Specify a custom color space for how the color components are decoded for accurate color in the array.

1. Select Color Settings.
2. Expand the Color Gamut area and select Custom.
3. Modify the color point values for the X and Y coordinates.
4. Click Apply Values.

Changing the color temperature

Specify the color temperature of the array, in degrees Kelvin.

1. Select Color Settings.
2. Expand the Color Gamut area.
3. To adjust the color temperature, move the slider or type a specific value in the field.
 The change is applied immediately.

Adjusting color by saturation

Defines the hue of each primary color component (red, green, and blue).

Adjustments to the color saturation may require that seam brightness be re-adjusted.
1. Select **Color Settings**.
2. Expand the **Color Saturation** area.
3. To change the color saturation for the entire array, adjust the sliders or type a value as necessary.
4. To change the color saturation for an LED module in a tile select the LED module and adjust the sliders or type a value as necessary.
 Multiple LED modules can be adjusted at the same time, but the LED modules must belong to the same tile.
5. To reset the changes to the individual LED module saturation, in the Reset Settings area click **Reset**.
 This does not reset the changes to the saturation of the entire array.

Adjusting the brightness of LED modules

If individual LED modules appear to be dimmer or brighter than the majority of the modules in the array, adjust the brightness of just those LED modules.

1. Examine the array and identify LED modules that appear dimmer or brighter than the surrounding modules.
2. Click **Color Settings**.
3. Starting from the middle column of the display, in the web user interface select the tile with the module to be adjusted and select the LED module on that tile to be adjusted.
4. Display a **Flat Green** test pattern.
5. Adjust the **Green of Green** slider until the required brightness is achieved.
6. For all LED modules identified in step 1, repeat step 5.
7. Change to a **Flat Blue** test pattern.
8. For the **Blue of Blue** setting, repeat step 5 and 6.
9. Change to a **Flat Red** test pattern.
10. For the **Red of Red** setting, repeat step 5 and 6.
11. Display a **Flat White** test pattern.
12. Confirm the brightness uniformity and balance is matched across all LED modules.
13. If the brightness is still not uniform or balanced, repeat steps 4 to 11 until the brightness is correct.
Maintaining the array

Understand the procedures for performing maintenance on the MicroTiles LED array.

Checking the current software version

Verify the version of the software running on the MicroTiles LED array.

1. Select System Settings.
2. In the Software area, review the current version and the date of the last update.

Updating the MicroTiles LED software

To install available software updates use the MicroTiles LED web user interface.

Notice. If not avoided, the following could result in property damage.

- Do not disconnect the power source for any components during the update.

For normal operation, all devices in the array must have the same version of firmware.

1. Download the latest software from www.christiedigital.com and save it to the computer to be connected to the array for the update.
2. Log into the MicroTiles LED web user interface.
4. In the Software section, select Upgrade.
5. Navigate to the file saved in step 1 and select OK.
 The update starts immediately and progresses in this order:
 a. The LED wall controllers are updated.
 b. After the wall controllers are updated, all Octrollers are updated.
 c. After all the Octrollers finish the update process, the tiles connected to the Octrollers are updated.
 When the update is finished, the status is displayed.
6. For the update to be applied, to restart the array click Reboot.
 Christie recommends clearing the browser cache after performing a firmware upgrade and before running the new software on the array.

Related information

Restarting the array (on page 22)
Synchronizing the date and time

Synchronize the date and time on the wall controller with the date and time of the computer accessing the web user interface.

1. Select **System Settings**.
2. In the Controller area, select **Sync to System**.
 The date and time on the wall controller is updated immediately.

Backing up the MicroTiles LED profile

Create a backup of the settings for each hardware component in the array

1. Log into the web user interface.
2. Select **System Settings**.
3. Click Backup.
4. To save the file, click **OK**.
 The backup file is downloaded to the folder specified in your browser.

Restoring a backed up profile

After components have been replaced, to avoid having to re-configure the array restore the backed up settings.

1. Log into the web user interface.
2. Select **System Settings**.
3. Click **Restore**.
4. Navigate to the backup file, and click **Open**.
5. Select the settings to restore.
6. If any issues are identified, such as missing components or replaces components, specify the action to take.
7. Click **Restore**.
8. Click **Close**.

Restarting the array

When powering off in preparation for inspection or maintenance, always disconnect from power.

1. In the web user interface, click **Power**.
2. To restart the array, select **Reboot**.
3. To put the array into Standby mode, select **Power Off Wall** and turn off the wall controller and the remote power rectifiers.
4. To power on the array, turn on the rectifiers and wall controllers.
5. To bring the array out of Standby mode, in the web user interface select **Power > Power On Wall**.
Cleaning the LED panels

Learn how to clean the MicroTiles LED panel.

Notice. If not avoided, the following could result in property damage.

- Always wear clean, lint-free gloves when handling the product.

To avoid the risk of damaging the LEDs, clean the panel only if absolutely necessary.

1. To clean the LED panels use a dry, clean, soft cloth with a low lint count or a paint brush to remove any particles.
 Do not use the following products when cleaning the panels:
 - Compressed air cans
 - Liquids
 - Abrasive cloths

2. To remove loose particles between the LEDs, use filtered compressed air.
 Ensure the air compressor does not spray oil or condensation.

Restoring factory default settings

Restoring factory settings removes all custom device settings.

1. To restore the factory defaults through the LCD display on the wall controller:
 a) Select Admin.
 b) Select Reset Factory Defaults.
 All customized settings are set to the default factory settings.
 c) At the confirmation prompt, select Reset.

2. To restore the factory defaults through the web user interface:
 a) Log into the web user interface.
 b) Select System Settings.
 c) In the Backup and Restore area, select Reset.
 d) In the confirmation dialog, select Reset.
Troubleshooting the array

Learn the information and procedures for troubleshooting issues with the MicroTiles LED array.

Viewing the status of the entire array

To assist with diagnostics, use the status interface to view status information about the Christie MicroTiles LED.

1. Select Status or click the colored bar in the top right corner.
2. In the Device List, select a wall controller.
3. In the wall controller properties area, review the status information.
 Areas of the array requiring attention are colored orange or red. Orange indicates a warning, which may impact the performance of the array. Red indicates an error, which stops content from appearing on the array.
4. To identify the cause of the colored status, expand the section.
5. To remedy the warning or error, modify the array configuration as needed.

Generating an interrogator file

The interrogator captures diagnostic information Christie personnel uses to help diagnose and correct any issues.

1. Select System Settings.
2. In the Interrogator section, select Run.
3. Select Save File and click OK.
 The interrogator data is downloaded to the computer as a .zip file.

Exporting system status data

To assist with analysis and troubleshooting, extract data on the temperature, power, and status of all components in the array.

1. Select System Settings.
2. In the System Snapshot area, select Export.
3. Select Save File and click OK.
 The snapshot data is downloaded to the computer as a .csv file.
Downloading the log files
Logs files can aid with the identification and correction of array issues.

1. Select **System Settings**.
2. In the Software area, select **Download Logs**.
3. Select **Save File** and click **OK**.
 The log files are downloaded to the computer as a .csv file.

Viewing the temperature of the tiles
To identify which tiles are reaching the temperature heat threshold, display the HeatMap test pattern.

1. Log into the web user interface.
2. Click **Show Test Pattern**.
3. Select **HeatMap**.
 The tiles in the array are updated to display their current temperatures in Celsius.
4. To turn off the test pattern, select **Off**.
<table>
<thead>
<tr>
<th>Corporate offices</th>
<th>Worldwide offices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christie Digital Systems USA, Inc.</td>
<td>Africa
ph: +27 (0)11 510 0094</td>
</tr>
<tr>
<td>Christie Digital Systems Canada Inc.</td>
<td>Australia
ph: +61 (0) 7 3624 4888</td>
</tr>
<tr>
<td>ph: 714 236 8610</td>
<td>Brazil
ph: +55 (11) 2548 4753</td>
</tr>
<tr>
<td>ph: 519 744 8005</td>
<td>China (Beijing)
ph: +86 10 6561 0240</td>
</tr>
<tr>
<td></td>
<td>China (Shanghai)
ph: +86 21 6030 0500</td>
</tr>
<tr>
<td></td>
<td>Columbia
ph: +57 (318) 447 3179</td>
</tr>
<tr>
<td></td>
<td>France
ph: +33 (0) 1 41 21 44 04</td>
</tr>
<tr>
<td></td>
<td>Germany
ph: +49 (0) 221 99512 0</td>
</tr>
<tr>
<td></td>
<td>India
ph: +91 (080) 6708 9999</td>
</tr>
<tr>
<td></td>
<td>Japan (Tokyo)
ph: 81 3 3599 7481</td>
</tr>
<tr>
<td></td>
<td>Korea (Seoul)
ph: +82 2 702 1601</td>
</tr>
<tr>
<td></td>
<td>Mexico
ph: +52 55 4744 1790</td>
</tr>
<tr>
<td></td>
<td>Singapore
ph: +65 6877 8737</td>
</tr>
<tr>
<td></td>
<td>Spain
ph: +34 91 633 9990</td>
</tr>
<tr>
<td></td>
<td>Middle East
ph: +971 (0) 503 6800</td>
</tr>
<tr>
<td></td>
<td>United Kingdom
ph: +44 (0) 118 977 8000</td>
</tr>
<tr>
<td></td>
<td>United States (Arizona)
ph: 602 943 5700</td>
</tr>
<tr>
<td></td>
<td>Italy
ph: +39 (0) 2 9902 1161</td>
</tr>
<tr>
<td></td>
<td>Russia
ph: +36 (0) 1 47 48 100</td>
</tr>
</tbody>
</table>

For the most current technical documentation, visit www.christiedigital.com.